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Abstract:  A protoplast is a plant cell from which the cell wall has been removed by enzyme treatment. 

Tremendous utilization of protoplast in molecular analysis of plant growth and development has been 

observed in the past decades and the system has paved its way to significantly facilitate the 
comprehensive understanding of the complexity of underlying mechanisms. However, it should be 

kept in mind that a plant, like all systems, is composed of networks of interdependent components 

that integrate the system into a unified whole. In this mini review, we will re-explore protoplast 
approach in answering plant physiology questions through discussion of its application in the study 

of (1) photosynthesis and chloroplast-related process; (2) pollen tube growth; (3) sieve tube element 
protoplast for long distance translocation; (4) new regulatory metabolites from guard cell protoplast. 

This in vitro approach may open the way to further meaningful results at organismal level.   
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Introduction 

 

 Protoplasts are plant cells that are not enveloped by the protective cell wall. 

Physiological properties of plant protoplasts and application of plant protoplasts as a 

physiological tool were discussed a few decades ago reflecting the early purpose and effort 

of the use of protoplasts [GALUN, 1981; PILET, 1985]. With the advance in cellular and 

molecular technology, protoplast application in the analysis of plant signaling has been re-

emphasized [SHEEN, 2001; XING & WANG, 2015; XING & al. 2017]. Educational effort 

was made through Annual Conference of American Society of Plant Biologists and 

published protocols are provided by Sheen Lab [http://molbio.mgh.harvard.edu 

/sheenweb/protocols_reg.html].  

 The concerns and drawbacks in using protoplasts for plant studies are mainly 

related to the single cell status isolated from in planta environment and the potential 

damage due to the isolation process [SHEEN, 2001]. Plant cell metabolism, growth, and 

development are modified by a large variety of internal and external signals. The ability of 

cells to respond to these signals is not confined to cells that are still growing and 

developing. Mature cells too can initiate metabolic responses and can even reinitiate growth 

and division in response to signal information. Many regulatory pathways are now 

characterized and the underlying genes are known. However, we should admit that contrast 

to animal cells, plant cells can easily change their identity when taken out of their 

environment or when cell lineages are disrupted [FARACO & al. 2011]. They may even 

change identity rapidly according to their new position when they are re-positioned [VAN 

DEN BERG & al. 1995]. Another indication comes with the totipotency and regeneration 
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of an entire plant from cultured protoplasts as they must have first gone through 

dedifferentiation. It is not unreasonable to consider protoplasts as cells with loss of their 

identity and it makes protoplasts questionable in studies of cell type or tissue specific 

processes [FARACO & al. 2011].  

 On the other hand in this regard, two of the most significant supporting evidences 

are also provided in previous discussions: (1) Protoplasts retain properties of the cells and 

tissues they originate from for hours [BART & al. 2006; BIRNBAUM & al. 2003; 

FARACO & al. 2011; SHEEN, 2001; ZHAI & al. 2009]; (2) Protoplasts may have similar 

responses as intact whole plant tissues when responding to hormones, metabolites and 

environmental stimuli, and early experiments verified protoplast involvement in active 

photosynthesis and respiration, and protoplast retained their cell membrane potentials as 

endogenous cells [SHEEN, 2001]. Protocols have been well established for a large variety 

of plant species, so potentially some specific physiological functions could be tested in 

these species using protoplasts [XING & WANG, 2015]. Here, we will re-emphasize its 

usefulness in addressing physiological questions in plants through discussion of some 

representative cases.  

 

 Photosynthesis and chloroplast-related process 
 Biological process can often be a relay of events occurring from one specific tissue or cell 

type to another. While this could be a disadvantage for protoplast application, there are studies with 

cells which have specific functions but are surrounded by other cells that may interfere with these 

studies. The usefulness of protoplast techniques for physiological investigations is especially 

evident in physiological studies of photosynthetically active leaf cells.  

 The C4 photosynthetic carbon cycle is evolved as an adaptation to high light 

intensities, high temperatures, and dryness, and it can be considered an elaborated addition 

to the C3 pathway. The evolution also introduced biochemical and anatomical modifications 

that allow plants with this photosynthetic pathway to concentrate CO2 at the site of 

ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), thereby its oxygenase reaction 

and the following photorespiratory pathway are largely repressed in C4 plants [GOWIK & 

WESTHOFF, 2011]. In most C4 plants the CO2 concentration mechanism is achieved by a 

division of labor between two distinct, specialized leaf cell types, the mesophyll and the 

bundle sheath cells [EDWARDS & al. 2004]. The bundle sheath cells enclose the vascular 

bundles and are themselves surrounded by the mesophyll cells. This wreath-like structure of 

C4 leaf anatomy is termed Kranz anatomy, which is absent in C3 plants. In the early 

attempt, protoplasts were isolated from mesophyll cells of C3 plants and mesophyll 

protoplasts were separated from bundle sheath cells of C4 plants [cf. GALUN, 1981]. It was 

shown that the carboxylation phase of the C4 pathway is located in mesophyll protoplasts 

while the decarboxylative phase of this pathway as well as the carboxylative phase of the 

Calvin-Benson pathway is located in the bundle sheath cells. Ribulose-1,5-bisphosphate 

carboxylase was found only in bundle sheath cells and not in mesophyll protoplasts [cf. 

GALUN, 1981]. 

 To further our understanding of sophisticated underlying regulatory mechanisms, a 

highly efficient rice green tissue protoplast system for studying light/chloroplast-related 

processes was established [ZHANG & al. 2011]. The feasibility of such studies was 

demonstrated by the observation that transient expression of the GFP tagged light-related 

transcription factor OsGLK1 markedly upregulated transcript levels of the endogenous 

photosynthetic genes OsLhcb1, OsLhcp, GADPH and RbcS [ZHANG & al. 2011]. 
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 Pollen tube growth 

 Pollen recognition or rejection is determined by the pollen surface protein and 

stigma surface protein. The process involves fluxes of multiple ions. The use of non-

invasive methods has demonstrated a close link between intracellular ion fluctuations and 

ionic fluxes across the plasma membrane, and the cellular phenomena that occur during the 

formation and elongation of the pollen tube [FEIJÓ & al. 2001; HEPLER & al. 2001]. 

Transcriptomic studies have also demonstrated a number of anion /chloride membrane 

transporters and channels to be specifically and highly expressed in the pollen of 

Arabidopsis [PINA & al. 2005]. Protoplasts are favorable tools to study transport 

physiology as well as other physiological entities of the plasma membrane. The study in in 

the plasma membrane of Lilium longiflorum pollen protoplasts showed for the first time the 

presence of a large anionic conductance across the membrane of pollen protoplasts, 

resulting from the presence of Ca2+-regulated channels, and a similar conductance was also 

found in germinated pollen [TAVARES & al. 2011].  

 

 Sieve tube element protoplast for long distance translocation 

 It is arguable whether protoplast approach is applicable to some highly coordinated 

physiological processes. One of the examples is phloem long distance translocation. In 

angiosperms, sieve elements (SE) lose many organelles, retaining only the plasma membrane 

and modified mitochondria, plastids, and smooth endoplasmic reticulum. Sieve elements are 

interconnected through pores in their end cell walls and form a longitudinal series called sieve 

tube. Companion cells aids the highly specialized sieve elements in three main ways (1) 

transport photosynthetic products from producing cells in mature leaves to the sieve elements in 

the minor veins of the leaf; (2) carry the protein synthesis, that is reduced/lost in sieve elements; 

and (3) supply ATP to sieve elements. The pressure-flow model explains phloem translocation 

as a bulk flow of solution driven by an osmotically generated pressure gradient between source 

and sink. These sieve element cells are transporting cells but with specialized subcellular 

structures. While protoplasts have yielded considerable insight into plasma membrane-bound 

ion channels and carbohydrate carriers in a variety of plant cells ranging from large parenchyma 

cells to guard cells, due to technical barriers, SEs were missing from other cell types that had 

been protoplasted successfully.  

 A technical fine tuning of cell wall digestion and the unequivocal identification of 

SE protoplasts led to isolation of functional SE protoplasts from Vicia faba as tested by 

osmotic treatment and the functionality examined by patch-clamp experiments [HAFKE & 

al. 2007]. At negative membrane voltages, the current-voltage relations of the SE 

protoplasts were found dominated by a weak inward-rectifying K+ channel that was active 

at physiological membrane voltages of the SE plasma membrane [HAFKE & al. 2007]. 

This channel had electrical properties that are reminiscent of those of the AKT2/3 channel 

family, localized in phloem cells of Arabidopsis [DEEKEN & al. 2002; LACOMBE & al. 

2000]. SE protoplasts could be an alternative in studying the membrane biology of SEs with 

inherent implications for the understanding of long distance transport and signaling. SE-

mediated mass flow through phloem makes high demands on the physical properties of the 

SE plasma membrane, and isolation of SE protoplasts may thus facilitate the study of 

membrane biophysics in this long distance process [PATRICK, 2013; TURGEON & 

WOLF, 2009].   
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 Phloem-associated K+ channels had been located in the phloem by in situ analysis 

[LACOMBE & al. 2000], however, the exact cellular localization, ion channel densities, 

ion channel types, and particularly distribution along the phloem path were unknown. SE 

protoplasts isolated from the respective phloem sections would provide a unique tool for 

unequivocal information about these issues. Such successive phloem sectioning also 

enabled to identify, characterize, and quantify carbohydrate carriers in the SE plasma 

membrane at various sites along the phloem translocation pathway. Differential deployment 

of sugar carriers is likely essential for carbohydrate allocation in intact plants [HAFKE & 

al. 2007; KÜHN, 2003; PATRICK, 2013].  

 

 From metabolomics analysis of guard cell protoplast to leaf stomata bioassay 

 Among the environmental signals that guard cells transduce are light quality, light 

intensity, intercellular concentrations of leaf carbon dioxide, drought, and apoplastic 

concentrations of abscisic acid (ABA) [OUTLAW, 2003]. Drought can severely damage 

crops and at physiological level, vascular land plants conserve water via stomatal closure 

in response to drought. Guard cells have been highly developed as a model system to 

dissect the dynamics and mechanisms of plant cell signaling as well as for studies on guard 

cell ion transport [OUTLAW, 2003; TALLMAN, 2006; ZHU & al. 2016]. A recent 

comprehensive protocol on cellular, electrophysiological, and omics assays of guard cell 

function is a good reference [ZHU & al. 2016]. Small scale and large scale guard cell 

protoplast preparations are commonly used for electrophysiological and omics studies, 

respectively. One of the most significant approaches in gurad cell analysis utilized about 

350 million guard cell protoplasts from about 30,000 plants of the Arabidopsis wild type 

and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive 

stomata [JIN & al. 2013]. This metabolomics analysis has triggered further research 

questions and directions [JIN & al. 2013].  

Recently, a non-targeted metabolomics utilizing gas chromatography mass 

spectrometry (GC-MS/MS) and liquid chromatography mass spectrometry (LC-MS/MS) 

were employed to identify metabolic signatures in response to ABA in B. napus guard 

cell protoplasts [ZHU & al. 2017]. The identified 390 distinct metabolites in B. 

napus guard cells fell into diverse classes. Of these, 77 metabolites, comprising both 

primary and secondary metabolites were found to be significantly ABA responsive, 

including carbohydrates, fatty acids, glucosinolates, and flavonoids. Secondary 

metabolites, sinigrin, quercetin, campesterol, and sitosterol were selected for stomatal 

bioassays in Arabidopsis and B. napus. Fully expanded leaves from Arabidopsis or B. 

napus leaf pieces were excised and incubated with stomata opening solution under white 

light to promote stomatal opening. All these tested secondary metalolites were confirmed 

to regulate stomatal closure in Arabidopsis, B. napus or both species [ZHU & al. 2017].  

 

Conclusion 

 

 Considerable application of protoplast has been observed in the study of molecular 

mechanisms of plant growth and development due to the advantages of this in vivo cellular 

system [SHEEN, 2001; XING & WANG, 2015; XING & al. 2017]. Meanwhile, its potential 

in addressing physiological questions is also very promising, even though it could be 

challenging to interpret data obtained from protoplasts at physiological and organismal level. 
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 A general response and specific developmental processes may require different 

approaches and strategies. For example, identification of specific cell types where 

phosphorylation is activated may require that the protoplasts are to be isolated from the 

specific cell types with cellular responses evoked. Mitogen-activated protein kinase 

(MAPK) activation during stress response and immunity can be measured biochemically 

using kinase activity assays or immunoblot detection of phospho-MAPKs because the 

activation of MAPKs is global. However, their activation during specific growth and 

developmental processes is likely to be limited to a specific tissue or even a few cells.  

 The spatiotemporal expression of receptor-like kinases (RLKs) and their ligands 

provides a mechanism to define the response only in a specific group of cells. A single 

MAPK cascade composed of YDA-MKK4/MKK5-MPK3/MPK6 functions downstream of 

ER/ERLs to regulate both stomatal development and localized cell proliferation [LEE & al. 

2012; XU & ZHANG, 2015]. In this case, the signaling specificity is a result of limited 

tissue/cell-specific expression of the peptide ligands of ER-family receptors [HUNT & 

GRAY, 2009]. EPF1 and EPF2, which are expressed specifically within a subset of 

stomatal lineage cells, define the function of ER/ERL1/ERL2–YDA–MKK4/ MKK5–

MPK3/MPK6 pathway in stomatal development [HARA & al. 2007; HUNT & GRAY 

2009; LEE & al. 2012]. Protoplasts should then be isolated from sophisticatedly defined 

cell types. 

 Biological systems are composed of networks of interdependent components that 

integrate the system into a unified whole. We should keep in mind and in practice that after 

protoplast-based analysis, all results and hypotheses have to be verified at organism levels. 

‘The whole is something over and above its parts and not just the sum of them all’ as stated 

by Greek physician Aristotle (384-322 B.C.).  
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