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Abstract: Many uses of protoplasts, plant cells with the cell wall removed, have been explored. Many 
advantages of the system have been realized and proven in recent years in various physiological, 
biochemical, genetic, and molecular biological studies. Reliable methods to isolate viable protoplasts 
from a broad variety of plant species have been established. Regeneration of plants from protoplasts 
has become one of the options involved in crop gene manipulation and crop improvement. Here, we 
present how protoplast system may help crop gene editing and novel trait development, and discuss 
the potentials and challenges of this approach.   
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Introduction 
 

Crop improvement through genetic manipulation has been in practice for decades. 
T-DNA-based gene overexpression, RNAi, or transposon insertional mutagenesis play a 
significant role in the manipulation of gene expression levels or changes of phenotypes. 
However, there is an increasing demand for simultaneous multi-gene manipulations for two 
main reasons: (1) The current wealth of different data types annotating the genome and how 
the many molecules in the parts interact with each other poses a demand to develop 
methods of integration that seamlessly connect genome-wide data; (2) Multi-traits 
development such as value added food, enhanced stress and pathogen-resistant crops, 
energy efficient architecture and increased yield also requires tools for multi-targeting and 
multi-manipulation. In the past a few years, multiplex genome editing strategies have been 
developed and become available for such a need. Zinc-finger nucleases (ZFNs) and 
transcription activator-like effector nucleases (TALENs) are proteins that can produce 
double-strand DNA breaks that when repaired introduce site-specific mutations or 
insertions [JAGANATHAN & al. 2018]. The clustered regularly interspaced short 
palindromic repeats (CRISPR)/CRISPR-associated (Cas) system uses RNAs to target 
nucleases to specific sites; when repaired, site-specific mutations or insertions are 
introduced [JAGANATHAN & al. 2018]. Multiple single guide RNAs (sgRNAs) with 
various target sequences can also direct Cas9 to multiple sites [CONG & al. 2013]. This 
feature of Cas9 allows simultaneous editing of multiple loci in the same individual.  

Transgene-based delivery systems and non-transgene delivery systems are both 
applied to gene-editing. In the latter, additional advantages exist in protoplast system. 
Protoplasts have been successfully, and in some cases, routinely applied to complex 
signaling analysis in many plant species including Arabidopsis, tomato, tobacco, broad 
bean, maize, rice, wheat, barley, poplar, petunia, and moss [XING & WANG, 2015]. 
Various plant tissues can provide the cells for protoplast production. Protoplasts have been 
isolated from suspension cultures, callus cultures, embryos, shoots, and seedlings [XING & 
WANG, 2015]. The versatile cell-based assays have significantly facilitated an integrated 
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understanding of some complex mechanisms such as plant signaling network [SHEEN, 
2001; LI & al. 2015; XING & WANG, 2015; XING & al. 2017]. In addition to the above 
two main demands, protoplast system is a critical alternative in crop engineering in that 
they can be regenerated into plants [WOO & al. 2015; LIN & al. 2018]. Here, we will 
highlight the significant opportunities and challenges for plant protoplast system in crop 
genome editing. 

 
 Protoplast and large-scale screening 
 Genomic data of model systems and crop species have provided us with 
overwhelming amount of resources and discovery of the function of any genes in the 
genome (e.g. 25,000 in Arabidopsis and 41,000 in rice) is now within reach. While stable 
transformation takes considerable amount of time, initial screening can be achieved in a 
cost-effective manner in protoplast system [JUNG & al. 2008; XING & WANG, 2015]. The 
system is applicable for the analysis of gene expression effect, knock-out or knock-in gene 
editing effect and protein-protein interactions [EHLERT & al. 2006; LI & al. 2011, 2015; 
XING & WANG, 2015; SAKAMOTO & al. 2020]. Further developed robotic systems for 
protoplast isolation and transformation facilitated automated high throughput screening 
[XING & al. 2014; LOWDER & al. 2015; QUÉTIER, 2016; ČERMÁK & al. 2017]. 
 As tissue culture and regeneration procedures to generate gene-edited events are 
time consuming, large-scale screening will facilitate rapid validation of genome-editing 
reagents and screening for resulting targeted mutagenesis [DLUGOSZ & al. 2016; 
NADAKUDUTI & al. 2019]. In the past a few years, protoplasts were successfully applied 
to gene editing analysis in Arabidopsis [LI & al. 2013, 2015], tobacco [LI & al. 2013], 
maize [LIANG & al. 2014], brassica [MUROVEC & al. 2018], rice [SHAN & al. 2014], 
wheat [WANG & al. 2014b; ZHANG & al. 2016; LUO & al. 2019], soybean [SUN & al. 
2015], tomato [ČERMÁK & al. 2015], potato [ANDERSSON & al. 2017], strawberry 
[GOU & al. 2020], grapevine and apple [MALNOY & al. 2016]. Transient protoplast 
transfection is also an alternative strategy to test multiple mutagenesis parameters rapidly 
[LIN & al. 2018]. Hence, transient assays using protoplasts from various plant species hold 
great promise for increasing the speed at which genes can be studied, bridging the gap 
between the large data sets coming from high-throughput assays and the time consuming 
and laborious in planta investigations. Protoplast is also one of the main plant materials for 
Cas9 system delivery in various studies of crop species [MANGHWAR & al. 2019].  
 
 Selection of plant materials 
 Protoplast generation involves removal of tissue surface and enzyme treatment. 
The protocols for Arabidopsis mesophyll or maize mesophyll protoplast systems and 
Arabidopsis or tobacco BY-2 suspension cultured cells could serve as guidelines [SHEEN, 
2001; YOO & al. 2007]. A simpler protoplast isolation method involving the use of two 
different adhesive tapes to sandwich Arabidopsis leaves was also developed [WU & al. 
2009]. One should evaluate the isolation success before moving to any analysis. Intact 
viable protoplasts could be identified by a few common methods including (1) viable 
protoplasts exclude Evan's blue appearing clear or yellowish against a blue background; (2) 
viable protoplasts can accumulate neutral red and turn red; (3) fluorescent dyes are also 
used to stain viable protoplasts [XING & WANG, 2015].   

Use of healthy leaves at the proper developmental stage is a very important factor 
in the production of viable protoplasts from Arabidopsis while stressed leaves (e.g. those 
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under drought, flooding, extreme temperature and constant mechanical perturbation) may 
seemingly give protoplasts but they only lead to low transfection efficiency when used in 
gene expression analysis [YOO & al. 2007]. In a sense, protoplast isolation remains a 
bottleneck to testing genome-editing reagents in many crop species. It is critical in the study 
of gene-editing effect to give considerable time to set up a reproducible protoplast system.  

 
Transfection efficiency  

 The plant species, source materials, isolation methods and transfection methods all 
play a role in determining the transfection efficiencies. From one case to another, this can 
vary dramatically, e.g. around 50 to 70% in tomato leaf mesophyll system [XING & al. 
2001, 2008] down to only 5% to 20% in Arabidopsis root protoplasts [BARGMANN & 
BIRNBAUM, 2009]. The best so far probably is the Arabidopsis mesophyll protoplast 
system, which may reach 90% transfection efficiency [SHEEN, 2001; YOO & al. 2007]. 
However, further improvement in transfection efficiency is always possible in any systems. 
Protoplasts from six species in brassicaceas also gave 43-83% transfection efficiency [WU 
& al. 2009]. Transfection efficiency was also tested and improved in multiple species from 
a single study, where protoplast transfection efficiency was shown to be 44-63% for rice, 
maize, wheat, millet, bamboo, and tomato [LIN & al. 2018]. In this study, the efficiency of 
CRISPR/Cas9-mediated mutagenesis (insertions, deletions) in the isolated protoplasts from 
different species varied dramatically ranging from 0.2% and 1.1% for Zea mays to 75.2% in 
Brassica oleracea [LIN & al. 2018]. Co-expressing GFP along with site-specific nuclease 
(SSN)-reagents in protoplasts may help the detection of the delivery and expression of 
genome-editing reagents and the co-expression approach facilitated direct comparison of 
the transformation efficiencies of CRISPR/Cas9 and TALEN reagents [NADAKUDUTI & 
al. 2019]. Although protoplast transfection efficiency is not correlated to the efficiency of 
CRISPR/Cas9-mediated mutagenesis, a healthy population of protoplasts with a high 
transfection efficiency is critical for CRISPR/Cas9-mediated mutagenesis. It should be 
noted that there is considerable variability in gRNA efficiency, and this does not seem to 
change with expression system or Cas9 delivery method. The feasibility of improving 
CRISPR/Cas9 editing efficiency by Fluorescence Activated Cell Sorting (FACS) of 
protoplasts was examined and protoplasts expressing GFP tagged CRISPR/Cas9, delivered 
through A. tumefaciens leaf infiltration, could be enriched by FACS [PETERSEN & al. 
2019]. 
 
 Regeneration from protoplast 
 Started with gene editing in protoplast, whole plants were generated with targeted 
modifications for various plant species [LI & al. 2013; SHAN & al. 2014; WANG & al. 
2014b; SUN & al. 2015; WOO & al. 2015; CLASEN & al. 2016; MALNOY & al. 2016; 
KIM & al. 2017; LIANG & al. 2017; MANGHWAR & al. 2019]. CRISPR/Cas12a and base 
editing systems along with DNA-free CRISPR delivery methods were also implemented in 
protoplasts, targeted mutagenesis achieved, and plants regenerated with desired edited 
mutations [WOO & al. 2015; ANDERSSON & al. 2017; KIM & al. 2017]. For plant 
species that can be regenerated from protoplasts, the phenotypic changes are assessed at the 
whole plant level. With high delivery efficiencies and effective nucleases, a significant 
number of the plants regenerated from transformed protoplast populations harbor mutations 
at the target locus [CLASEN & al. 2016; LI & al. 2016]. A majority of them were shown 
not to have foreign DNA, which indicate that the nuclease was expressed only transiently, 
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and the construct was degraded before integration. This certainly is an additional advantage 
as the lack of foreign DNA is often desirable due to biotechnology regulation.  
 Difficulties do exist, together with concerns. Protoplast regeneration is difficult in 
most plant species [LIN & al. 2018], particularly monocots [BERNARD & al. 2019]. The 
regeneration process is time-consuming and is often preferred for quick efficiency test of 
gene editing systems or the mutagenesis effect [SOYARS & al. 2018]. Biolistic or A. 
rhizogenes-mediated transformation could be a common alternative. A. rhizogenes has been 
widely used to study rhizosphere, metabolic or hormone pathways [XING & al. 1996; 
GOMES & al. 2019]. Knocking out the CiPDS gene (phytoene desaturase) in chicory plants 
regenerated from both hairy roots and protoplasts was successfully shown [BERNARD & 
al. 2019]. We could expect that the list of protoplast-generated crops to expand because of 
the merit of ribonucleoprotein (RNP)-based genome editing technology. The significant 
potential is that while transient expression screening in protoplasts provides information for 
short listing of genes, further functional analysis with gene editing approaches can be 
followed by regeneration of plants so that gene editing effect will be analyzed at organismal 
level (Figure 1). 
 

 
 
Figure 1. Schematic diagram of protoplast application for single or multiplex gene editing and plant 

regeneration. Some technique notes are indicated by boxes on right. 
 

Conclusions 
 

 It is important that findings from large-scale omics analysis are confirmed by 
functional analysis. With the gene editing development such cell-based assays and 
functional screening will continue to facilitate the comprehensive understanding of the 
complexity of many processes in plants. Studies in the past several decades have indicated 
the usefulness of protoplasts and defined protoplast expression systems [XING & WANG, 
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2015]. Well established Arabidopsis, maize, tobacco, and tomato protoplast systems were 
applied to analysis of responses to oxidative, heat and osmotic stress signals, and pathogen 
elicitors [SHEEN, 1996; KOVTUN & al. 2000; TENA & al. 2001; XING & al. 2001, 2008; 
XING & WANG, 2015]. Protoplast system has also been applied to the analysis of 
developmental reprogramming [WANG & al. 2014a] and detailed metabolite investigation 
in specific cell types such as guard cells [JIN & al. 2013; RUBAKHIN & al. 2013]. As 
indicated in our previous work, a major application is protoplast transient transfection assay 
for the analysis of (1) gene expression in response to various signals and treatments; (2) 
promoter elements involved in regulating expression of genes; (3) roles played by signaling 
proteins such as protein kinases and transcription factors in regulating gene expression; (4) 
subcellular localization of proteins; (5) genetic interactions of genes; (6) protein-protein 
interactions; (7) gene interference effect; (8) proteomic and metabolomic profiles; and (9) 
functions of large number of genes derived from large-scale studies as an initial screening 
process [XING & WANG, 2015]. With such a broad application to mechanism analysis, we 
could be confident that the protoplast system will play an increasingly significant role in the 
coming years when high-throughput approaches and gene editing approaches meet.  
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