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Abstract: There are a variety of conditions that regulate flowering time in Arabidopsis, but there are no reported 

instances mitogen-activated protein kinase pathways playing a decisive role in flowering time. Our work 
has indicated that when long-day plant Arabidopsis mitogen-activated protein kinase kinase 1 (AtMKK1) 
was knocked out, Arabidopsis plants flowered under short day conditions. Possible mechanisms are 
discussed. 
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Introduction 
 

Mitogen-activated protein kinase (MAPK) pathways represent a crucial regulatory 
mechanism in plant development [JAGODZIK & al. 2018; RODRIGUEZ & al. 2010]. Light, 
as a signal, is critical in plant growth and development and plants are acutely sensitive to 
seasonal, daily and moment-to-moment variations in solar radiation [MATSUBARA & al. 
2014]. The light environment can convey information through variations in at least four 
dimensions, i.e. quality (the balance of photons of different wavelengths), quantity (energy 
flux), direction, and periodicity (relative length of day and night). However, with evidenced 
critical roles of both MAPK pathways and photoperiod in plant development, the involvement 
of MAPK pathways in photoperiod regulation is lacking. AtMKK1 (accession number 
AY050774; unique gene ID AT4G26070) is a stress response kinase that can activate the MAP 
kinases AtMPK3, AtMPK4 and AtMPK6 [RODRIGUEZ & al. 2010; MENG & ZHANG, 2013]. 
In our previous study, knockout of AtMKK1 enhanced salt tolerance during both germination 
and adulthood and proteomic analysis indicated that the level of the α subunit of mitochrondrial 
H+-ATPase, mitochrondial NADH dehydrogenase and mitochrondrial formate dehydrogenase 
was enhanced in AtMKK1 knockout mutants upon high salinity stress [CONROY & al. 2013]. 
Here we report our observation of bolting in Arabidopsis AtMKK1 knockout line under a short 
day condition. 

 
Material and methods 

 
Selection of mutant plants and plant growth conditions were as described previously 

[CONROY & al. 2013]. Primers for SALK_027645 (mkk1-2) were selected from approximately 
40 bp upstream of the insert, forward 5’-TATTTGGAGCTTGGGACTGG-3’ and downstream 
of the insertion reverse 5’-GCGAGATGAAGGAGCAAAAC-3’. The third primer used to 
identify knockouts was the Signal LBA1 primer 5'-TGGTTCACGTAGTGGGCCATCG-3'. 
There were two rounds of PCR. One using the left and right primers to identify wild-type alleles 
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and the second using the left primer with the LBA1 primer to identify the T-DNA insertions. 
RT-PCR was carried out under the following conditions: 94 °C for 1 min; 1 min at 94 °C, 1 min 
at 61 °C, and 1 min at 72 °C for 25 cycles; and then 10 min at 72 °C. 

For long day conditions the chamber was set to sixteen hours of light and eight hours 
of dark all at 22 oC. For short day conditions, the lights were on for eight hours and off for 
sixteen hours again at a constant temperature of 22 oC. Wild type and A31 knockout line seeds 
were all sterilized using 70% ethanol for two minutes followed by a solution of 30% bleach and 
0.02% Triton X-100 for eight minutes. After surface sterilization was complete the seeds were 
rinsed eight to ten times with sterile water and the seeds were then stratified by placing the seeds 
on MS medium at 4 oC for four days. They were then moved to growth chamber A (short day) 
and chamber B (long day). After ten days the plants were transferred from the plates into sterile 
soil and continued to grow in growth chambers.   

 
Results and discussions 

 
Arabidopsis development is photoperiod sensitive [GUO & al. 1998]. Arabidopsis as 

a long day plant followed normal growth patterns, bolting at 4-5 weeks and seeds were ready to 
be harvested by 8 weeks (Table 1). In contrast the short day plants followed normal short day 
growth and the wild type plants did not enter reproductive growth at any point. This can be 
contrasted to the appearance of the mutant plants. As can be seen in Figure 1C there was 
evidence that the plants had indeed entered reproductive growth. There was no significant 
difference in rosette leaf development (Table 1). 

 
Table 1. Rosette leaf numbers (35-day-old) and percentage of plants that flowered (at 8 weeks). Data 

based on three repeats of experiments with standard deviation. LD: long-day; SD: short-day. 
 
 
 
 
 
 
 

 
The earlier flowering of AtMKK1 mutants under short days was unexpected. AtMKK1 

is commonly considered a defense responsive gene with few members of kinase cascades 
impacting upon the development of Arabidopsis [GAO & al. 2008; COLCOMBERT & HIRT, 
2008]. This being said, there are still many roles and functions for MAPK pathway components 
that have yet to be identified. The impact of AtMKK1 on plant development has not been 
examined on any significant level, but the preliminary results showing the ability of AtMKK1 
mutant A31 to respond to changes in photoperiod indicated a significant phenotypic variation. 
More importantly, all of the bolted plants displayed fully formed siliques, flowers, as well as 
browning siliques ready for harvest. 

 
 

Plants Rosette leaf number Flowering plants (%) 

Col-0 LD 13.84±0.26 100±0 
A31 LD 13.36±0.47 100±0 
Col-0 SD 13.45±0.83 0±0 
A31 SD 13.62±1.06 41±2.16 
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Figure 1. A. Insertion site of knockout mutant of AtMKK1 (SALK_027645) is in the fifth intron. Line 
segments represent exons, dark boxes represent introns, and light boxes represent untranslated 5' or 3' 
flanking regions. B. Homozygous mutants for SALK_027645. Lane 1 shows the 1 kb ladder. Lane 2 shows 
the presence of the wild type AtMKK1 gene as seen in the band near the 220 kb marker. Lane 3 with no 
band shows that this sample contains the T-DNA insertion preventing PCR from running due to the size of 
the insert. PCR was performed three times to confirm the results. C. Wild type and knockout line A31 
plants grown in 8 hours light and 16 hours of darkness after 8 weeks. This experiment was performed three 
times with similar results. 

 
There are a variety of conditions that regulate flowering time in Arabidopsis, but there 

are no reported instances MAPKs, MAPKKs, or MAPKKKs playing a decisive role in flowering 
time. There are several environmental conditions, hormonal responses, and genetic variables 
that can lead to changes in the ability of Arabidopsis to thrive, or at least reproduce faster under 
short day conditions. These conditions are notable. Changes in light conditions, such as altering 
photoperiod or switching from short day to long day, can trigger bolting or planting in long day 
and then switching to short day can also affect bolting time [GUO & al. 1998; NAKATSUKA 
& al. 2009; SONG & al. 2013]. Changes to the intensity or wavelength of light can also cause 
Arabidopsis to bolt [CERDAN & CHORY, 2003]. Changes in the vernalization of Arabidopsis, 
through lowered temperatures during growth, or by increasing stratification time can also play 
a role in altering the ability of Arabidopsis to bolt [SONG & al. 2013]. Plants in this study, both 
wild type and AtMKK1 mutants, were grown under the same temperature conditions and all 
seeds were stratified for the same amount of time and under the same conditions, 4 oC in the 
dark. This rules out changes in the vernalization as the triggering factor in the early bolting of 
the AtMKK1 mutants. Once the environmental effectors have been ruled out the only remaining 
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possibilities are that there needs to be a genetic or hormonal response in the AtMKK1 mutant 
plants allowing the plants to break free from their short day induced vegetative state.  

The primary hormones responsible for the initiation of bolting under short day 
conditions are gibberellins (GA) [WILSON & al. 1992; SONG & al. 2013]. There is little 
support for AtMKK1 interacting with GA. AtMKK1 is primarily linked with defensive 
hormones such as jasmonic acid or salicylic acid, as well as some recent links to ABA [Xing & 
al. 2008]. AtMKK1 appears to have no relationship with GA and in fact there are few if any 
MAPK cascade kinases that have been linked to GA [COLCOMBERT & HIRT, 2008]. The lack 
of characterization of MAPK cascades however does not rule out the possibility of AtMKK1 
playing a role in a GA pathway directly or indirectly. AtMKK1 does play a role in regulating 
ABA sensitivity and AtMKK1 mutants show reduced sensitivity to ABA [Xing & al. 2008]. 
There are ABA deficient and ABA insensitive mutants that exhibit early signs of bolting 
[BERNIER & al. 1993; BERNIER & PÉRILLEUX, 2005; DOMAGALSKA & al. 2010]. The 
ability of ABA deficient or insensitive mutants to bolt under short day conditions provides an 
interesting potential hypothesis to explain the effects of AtMKK1 upon early bolting. Due to the 
large numbers of short day AtMKK1 mutant plants that were capable of bolting, and due to the 
reported positive regulatory link to ABA in AtMKK1, the reduced sensitivity towards ABA 
could be the source of the early bolting.  

Environmental factors, hormonal responses and genetic components all play a role in 
controlling the flowering time in Arabidopsis. There is a possibility that AtMKK1 does impact 
upon the expression level of photoperiod sensitive genes but there is little to no evidence to 
support that possibility at this time. A study with CRISPR gene editing of multiple members of 
MAPK cascade components in rice showed that loss-of-function mutations in OsMPK1 and 
OsMPK6 are unfavorable and an enrichment of inherited open reading frame-preserving 
mutations for OsMPK1 and OsMPK6 genes was found in T1 plants [MINKENBERG & al. 
2017]. We could assume that a mutation of an essential MAPK pathway component may have 
a pleiotropic effect, which may include our observations in this study.  
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